Characterizing Video-based Activity using a 3D Structure Tensor
نویسندگان
چکیده
This paper describes a structure tensor based method to characterize activity in videos. Based on the relationship observed between structure tensors and covariance matrices, the distance between structure tensor matrices is computed by either a generalized eigenvalue or a Riemannian manifold. A histogram of distances between structure tensor matrices is constructed to serve as a signature for motion clutter. This method differs from the usual measurement using smallest eigenvalue. It is shown, experimentally, that the distance between structure tensors evaluates uncertainty along different orientations. The distribution for specific activities exhibit a stable histogram over time. That is, experimental results show that there is coherent correlation between activity pattern and corresponding probability density function of distance between structure tensor matrices.
منابع مشابه
Fast Intra Mode Decision for Depth Map coding in 3D-HEVC Standard
three dimensional- high efficiency video coding (3D-HEVC) is the expanded version of the latest video compression standard, namely high efficiency video coding (HEVC), which is used to compress 3D videos. 3D videos include texture video and depth map. Since the statistical characteristics of depth maps are different from those of texture videos, new tools have been added to the HEVC standard fo...
متن کاملVideo Subject Inpainting: A Posture-Based Method
Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملMotion analysis and segmentation through spatio-temporal slices processing
This paper presents new approaches in characterizing and segmenting the content of video. These approaches are developed based upon the pattern analysis of spatio-temporal slices. While traditional approaches to motion sequence analysis tend to formulate computational methodologies on two or three adjacent frames, spatio-temporal slices provide rich visual patterns along a larger temporal scale...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کامل